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Abstract: The extraction of heart rate and other vital param-
eters from video recordings of a person has attracted much
attention over the last years. In this paper, we examine time
differences between distinct spatial regions using remote pho-
toplethysmography (rPPG) in order to extract the blood flow
path through human skin tissue in the neck and face. We can
show that the visualization of the blood flow path corresponds
to the physiologically defined path.
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1 Introduction

The human face is an important source of information about
a human being, such as its condition, e.g., measured by the
pulse rate, and is therefore used in a variety of different other
applications. An optical measuring technique called photo-
plethysmography (PPG) is commonly used to measure the hu-
man pulse rate [1]. The principle of PPG is based on human
blood circulation and the fact that blood absorbs more light
than surrounding tissue, so variations in blood volume affect
light transmission or reflectance accordingly [2]. A PPG sen-
sor placed directly on the skin optically detects these changes
in blood volume [2]. Wearing this sensor can cause patients
(especially infants and children) to feel uncomfortable and ner-
vous, which can have a negative effect on the measurement.
To overcome this, remote photoplethysmography (rPPG) al-
lowing contactless measurements of the pulse rate with a reg-
ular camera has been developed [1]. In literature, this method
is used to extract the vital parameters globally. Poh et al. [3]
present a non-contact, automated, and motion tolerant heart
rate measurement from video images based on blind source
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separation (i.e., independent component analysis). Rapczyn-
ski et al. [4] calculate the rPPG signal from the green chan-
nel of the subjects skin pixels. In [5], different color spaces
are compared to find the best-suited space for human pulse
calculation. It is shown that the Hue component in the HSV
color space delivers the most accurate pulse rate measurement
[5]. De Haan and Jeanne [6] present an algorithm to calcu-
late a chrominance-based rPPG signal. This algorithm works
robustly regardless of the subjects skin tone and the color of
the illumination with colored light sources (i.e., for nonwhite
illumination).

As the heart generates a blood volume pulse (BVP) with
each beat, it is the source of blood circulation. The resulting
blood flow through the face causes a minimal change in the
facial color. The methods of [3–6] estimate the pulse rate by
extracting and analyzing the subtle color changes in the skin
area (due to the blood circulation). Wu et al. [7] presented a
method to make these imperceptible color changes in video
recordings visible to the human eye. The method of [7] is noted
as Eulerian Video Magnification (EVM).

Since the BVP travels through the body, it causes a vol-
ume change inside the arteries. When the heart pumps blood
volume into the aorta, it generates a pulse wave [8]. This wave
indicates the temporal course and the direction of the flowing
blood volume. The pulse transit time (PTT) refers to the time
difference between the pulse peaks taken at two arterial sites
[9]. After the aorta, the blood flows through several arteries
until it reaches the left and right common carotid arteries [8].
The common carotid artery supplies the respective sides of the
head and neck and divides into internal and external carotid
arteries. The internal carotid artery begins at the carotid sinus
and supplies forehead, eyes and part of the nose. The external
carotid arteries supply blood to structures within the cheek,
lower jaw, neck, and larynx [8]. Figure 1 illustrates which re-
gions of the face are supplied by the external carotid artery and
by the internal carotid artery [10].

The aim of this work is to detect and classify vital data
locally through human skin tissue from videos to visualize the
blood flow and to derive a blood flow path. This work presents
a blood flow visualization that can uncover potential regions
in the face that are poorly supplied with blood. Besides, intra-
operative use of the blood flow visualization is conceivable in
order to uncover heavily perfused regions and thus assist the
surgeon (e.g., with tissue differentiation).
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Fig. 1: This figure illustrates areas of the head surface supplied by
the internal (InCA) and external (ExCA) carotid arteries [10].

2 Method and Material

2.1 Local rPPG Signal Analysis

The visualization of blood flow is based on a reliable and sta-
ble local rPPG signal. We investigate different rPPG signal
types locally to identify the most reliable rPPG method for this
work. We use the signal-to-noise ratio (SNR) definition by de
Haan and Jeanne [6] to quantify the signal quality.

Thus, we compare the local qualities of the resulting sig-
nals of Hue [5], Green (green channel of the RGB color space)
[4], 𝐺𝑛 (normalized green value) [4], Independent components
(ICs) [3], and Chro (chrominance-based) [6]. In contrast to lit-
erature, we expanded the calculation and analyze the rPPG sig-
nals pixelwise.

A thresholding test is applied to determine the signal qual-
ity of each signal type. In order to reduce noise and compu-
tational costs, we calculate a Gaussian pyramid for each im-
age of a video recording. We transform the images of the sec-
ond pyramid level into local representations of Hue, Green,
𝐺𝑛, ICs, and Chro. Subsequently, we calculate the SNR for
each pixel and perform a binary threshold operation at 0 dB
to determine the signal type that holds the most pixels above
that threshold. The results of six randomly selected video se-
quences of our database are shown in Table 1. The bold high-
lighted cells in this table mark the signal type with the most
pixel positions above 𝑆𝑁𝑅𝑡ℎ = 0dB. The results indicate
that the Chro signal is the best local rPPG signal representa-
tion (from the analyzed signals).

2.2 Extracting Spatial Time Delay

To visualize the blood flow, we need to reveal that the BVP
reaches different spatial regions within the face at different

Tab. 1: The number of pixels with an SNR above 0dB for each
signal type, where each row represents the results for a distinct
video recording. For each video sequence, the bold cell indicates
the signal type with the most pixel positions above 0 dB.

Number of pixel with 𝑆𝑁𝑅 > 0 dB

Video sequence Hue Green G𝑛 ICs Chro

ID01 8100 7014 9599 9714 11946
ID02 4887 2670 4978 4769 5576
ID03 3848 3276 3789 4160 4484
ID04 6626 3399 7085 7389 8032
ID05 12977 7377 13428 12335 14047
ID06 1253 253 1286 1229 1634

times. The time delay between these rPPG signals of different
spatial regions is calculated via the phase angles of the pulse
frequency component 𝑓𝑝𝑟 in the frequency domain. After a
fast Fourier transform (FFT) is applied to each local signal,
we calculate the phase difference of the spatial rPPG signals
of interest

Δ𝜙𝑖(𝑓𝑝𝑟) = 𝜙𝑟𝑒𝑓 (𝑓𝑝𝑟)− 𝜙𝑖(𝑓𝑝𝑟), (1)

where 𝜙𝑟𝑒𝑓 (𝑓𝑝𝑟) is the phase angle of a reference position and
𝜙𝑖(𝑓𝑝𝑟) is the phase angle of a position of interest. Then, the
time delay is then calculated by

Δ𝑡𝑖 =
Δ𝜙𝑖(𝑓𝑝𝑟)

2𝜋𝑓𝑝𝑟
, (2)

where 𝑓𝑝𝑟 is the global pulse frequency. This time difference
Δ𝑡𝑖 shows that the BVP reaches certain points in the face ear-
lier than other points.

2.3 Data Acquisition

A dataset of 88 video sequences of twelve healthy probands
(with age between 25 and 33 years) is created. Each proband
is connected to a vital sign monitor (VitaGuard 3100,
GETEMED, Germany) to measure the ECG and PPG simul-
taneously to the video recording. In order to achieve higher
robustness against motion artifacts and due to the higher sam-
pling frequency, the ECG measurements are used as reference
data in this work. The recorded scene is illuminated by com-
pact daylight (≈ 5600K) LED sources. These light sources are
placed in front of the subject with an angle of 30° to both sides,
to reduce shadow on the subject’s face. During the data acqui-
sition, subjects are recorded in different positions (frontal and
lateral), and with varying heart rate (resting and increased). All
subjects reach an increased heart rate through physical activity
prior to recording.

374

Unauthenticated
Download Date | 9/20/19 2:37 PM



B. Kossack et al., Local blood flow analysis and visualization 375

2.4 Proposed Framework

To visualize the human blood flow, we applied the framework
shown in Figure 2. As in [7], we spatially filter each frame
of the input video by calculating a Gaussian pyramid for each
frame. In contrast to Section 2.1, we use the images of the
third-level of the pyramid to increase the SNR (by reducing
noise) and to reduce computational costs. The remaining levels
are discarded. As shown in Figure 3, from one of the filtered
images, a contour containing face and neck is selected (e.g.,
with face recognition or manually). After the spatial filtering,
we use the normalized green channel [4] to calculate the global
pulse rate 𝑓𝑝𝑟 , as this method leads to satisfying results for all
our recordings.

Then, we apply the chrominance-based method [6] to
each spatial position to receive the local rPPG signal. We cal-
culate the SNR for the global pulse frequency from the local
rPPG signals within the selected face and neck contour. Addi-
tionally, we calculate a binary SNR-threshold-mask to include
only spatial position providing a reliable rPPG signal.

All positions below a certain threshold 𝑆𝑁𝑅𝑡ℎ are ex-
cluded from further processing. Throughout this work, a seg-
mentation of the visible skin tissue is reached with

𝑆𝑁𝑅𝑡ℎ = 𝜇(𝑆𝑁𝑅𝑟𝑃𝑃𝐺)− 2𝜎(𝑆𝑁𝑅𝑟𝑃𝑃𝐺), (3)

where 𝑆𝑁𝑅𝑟𝑃𝑃𝐺 represents the SNR of all positions within
the selected face and neck contour, the operator 𝜎 corresponds
to the standard deviation, and 𝜇 corresponds to the mean. All
spatial positions in the SNR-threshold-mask (i.e., the region
of interest (ROI)) (see Figure 3), carry the pulse rate of the
recorded person and the remaining positions are ignored for
further processing.

In this work, we calculate the time difference between sig-
nals of different position without any filtering via the phase an-
gles in the frequency domain. Therefore, the FFT for each spa-
tial rPPG signal within the ROI is calculated. We then extract
the phase angle 𝜙(𝑓𝑝𝑟) of the frequency component according
to 𝑓𝑝𝑟 .

In order to remove incorrectly calculated phase angles, we
check all angles for plausibility, whereby angles that corre-
spond to time delays of more than Δ𝑡𝑖 = 0.3 s are excluded,
as they are physiologically impossible [8]. We select the spa-
tial position with the largest phase angle as the reference point.
This point corresponds to the position where the BVP appears
last in time. In almost all frontal recordings, the position of
the highest phase angle is located near the subject’s mouth.
To make the measurements of the individual subjects compa-
rable, the reference point 𝜙𝑟𝑒𝑓 of the PTT map is always se-
lected within a rectangular area centered around the center of
the mouth of the subject.
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Fig. 2: Overall description of the framework to visualize the blood
flow.

In the last step, the phase differences Δ𝜙𝑖 between the
reference position and all other positions are calculated and
Equation (2) is applied to convert the resulting phase differ-
ences into the time delays Δ𝑡𝑖.

3 Results

We assume that the time delay corresponds to the time differ-
ence required by the peak of the BVP to reach different regions
and thus corresponds to PTT. Therefore, the visualization of
the blood flow is achieved with PTT maps, which map the cal-
culated time delays to their spatial position. Figure 4 shows
the resulting PTT maps for recordings of ID01 and ID02.

Fig. 3: This figure shows an arbitrary input frame of ID01 (after
pre-processing), the selected face and neck contour, and the cor-
responding SNR-threshold-mask (i.e., ROI).
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Fig. 4: This figure shows the resulting frontal and lateral PTT
maps of ID01 and ID02. The black cross shows the position of
𝜙𝑟𝑒𝑓 , which is last reached by the BVP.

4 Discussion and Conclusion

We visualize the blood flow through the skin tissue of the neck
and head in the form of PTT maps. The analyzed subject data
show consistent results and patterns (see Figure 4). Partial cov-
erings of the skin tissue by head hair, beard, and jewelry or
poor SNR cause artifacts and exclusions in the time delays.

Figure 4 shows the resulting lateral and frontal PTT maps
for two subjects. The color coding of the maps in Figure 4
shows areas in blue where the BVP arrives first and in red
where the BVP arrives at a later point in time. The physiolog-
ical described arterial blood flow path can be found in all PTT
maps. The oxygenated blood flows first into the neck and head
via the common carotid arteries. The majority of the frontal
and lateral PTT maps show a blue region on the neck (see Fig-
ure 4). This blue color indicates an area where the pulse ap-
pears early compared to the other spatial regions. The blue ar-
eas on the neck probably represent the blood that flows through
the common carotid arteries into the head. Therefore, it can be
concluded that the PTT maps can indicate the position of the
common carotid arteries.

Figure 1 shows that the forehead of a human being is sup-
plied by the internal carotid artery and the rest of the face by
the external carotid artery. This difference in supply arteries
can also be identified in the PTT maps. Each PTT map shows

that the pulse peak reaches the forehead earlier than the rest
of the face. This delay leads to the conclusion that the external
carotid supplies the cheeks, chin, and mouth later with blood
than the internal carotid the forehead region.

In this work, the chrominance-based rPPG signal is ana-
lyzed locally for the first time in order to visualize the blood
flow. From that, we obtain the position of specific arteries, the
path of the BVP, and it is possible to extract the PTT. It is con-
ceivable that the presented blood flow visualization can also
be used to differentiate between different soft tissues during
surgery similarly as in [11, 12]. Besides, analysis with hyper-
spectral imaging (HSI) and a combination of specific bands
could lead to better local rPPG visualization.
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